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Can We Break Intractability Using Randomization or the
Average Case Setting? , 94 0245

AFOSR-91-0347 -Wproved for public release I
di~str ibution .imte.

Final Report
J. F. Traub

Computer Science Department
Columbia University

September 1, 1991 to September 30, 1993

Our results fall into the three major areas described below.

I. Breaking Intractability

Since I have kept AFOSR well informed of progress in this area I will not repeat myself here.

The following five papers and reports deal with progress in this area.

1. A Surprising and Important New Result. Report to AFOSR by J. F. Traub,
February 25, 1993.

2. Recent Progress in Information-Based Complexity. J. F. Traub and
H. Wozniakowski. Invited paper, Bulletin European Association for Theoretical
Computer Science, October 1993, Number 51, pages 141-154.

3. Breaking Intractability. J. F. Traub and H. Wozniakowski. Published as cover
story Scientific American January 1994.

4. Development and Testing of Software for Multivariate Integration. Report to
AFOSR by S. Paskov and J. F. Traub, January 4, 1994.

5. Tractability and Strong Tractability of Linear Multivariate Problems.
H. Wozniakowski. To be published in the March 1994 issue of the Journal of
Complexity

DTIC QUALITY I~p3Jf1

We briefly describe the contents of the above papers and reports 94-12428

9 4 4 22 124



a Item #1 is a report to AFOSR introducing the concept of strong tractability.

* Item #2 is an invited article which reviews recent progress in information-based
complexity.

Item #3 is an invited article for Scientific American which reports on recent progress
in breaking intractability.

Item #4 is a report to AFOSR on the status of development and testing of software
for multivariate integration.

* Item #5 is the first publication regarding strong intractability. It will appear in the
March 1994 issue of the Journal of Complexity.

I. Monte Carlo

The Monte Carlo Algorithm With A Pseudorandom Generator. J. F. Traub and
H. Wozniakowski. Published in Mathematics of Computation, January 1992, Vol. 58, pages
323-339.

The current method of choice for computing multivariate integrals is Monte Carlo. Of course, on
a computer there are no random numbers, only pseudo random numbers. There is a huge
literature on statistical testing of pseudo random numbers. However these tests do not answer the
question of most interest to the user. Are the good properties of the Monte Carlo algorithm using
random numbers preserved if pseudo-random numbers are used? In this paper, which we believe
to be the first on this topic, we prove that the answer is yes provided some care is taken. For
example, in d dimensions it is necessary to use d random seeds.

HI. ll-Posed Problems

Linear l.-Posed Problems Are Solvable On The Average For All Gaussian Measures.
J. F. Traub and A. G. Werschulz. To appear, Math Intelligencer, 1994.

It has been proven that ill-posed problems are unsolvable in the worst -case deterministic setting.
Yet ill-posed problems, which occur in many applications, must often be solved.

An answer may be provided in this paper. We show that ill-posed problems are solveable on the
average for every Gaussian measure. This is the first paper on the average case analysis of ill-
posed problems.



A S,.RPRISING AND IMPORTANT NEW RESULT

J. F. Traub

Computer Science Department
Columbia University

February 25 .!1993

The number of function evaluations sufficient to solve important problems such as
multivariate integration and multivariate approxination is completely independent of the
number of variables!

CONTEXT FOR THE NEW RESULT

The following bullets put this new result into context.
"* High-dimensional problems occur in numerous applications in science and

engineering.

"* Most of these problems cannot be solved analytically. They have to be numerically
sol% ed, approximately.

"* Most multivariate problems are intractable in dimension. A typical result is that if
accuracy e is desired and there are d variables, then the computational complexity is

* Thus. if a two-place answer is desired, the problem is IN0 times harder for each
additional variable. If eight-place accuracy is desired. the problem is 100,000,00()
times harder for each additional variable.

* Although the physicists at Los Alamos did not know about computational
complexity, they realized they could not solve certain problems. This led to the
invention of Monte Carlo methods. For example, the computational complexity of
multivariate integration in the randomized setting is proportional to !/c2 and
therefore tractable.

" It was shown in 1989 that Monte Carlo methods cannot be used to break 'or
intractability of multivariate approximation. a.-

" An alternative to the randomized setting is the average case setting in which we seek 0
to break unsolvability and intractability by replacing a worst case guarantee that the 0
error is less than the threshold c with the weaker guarantee that the expected en'or is
less than E. Note that this is a deterministic setting: one has to solve the problem of
optimal sample points. A



e In 1991 it was shown that multivariate integration is tractable on the average. On a
power scale, the average computational complexity of multivariate integration is
proportional to l/E. For small E this is a major improvement over Monte Carlo,
although for a different error criterion. Optimal sample points were obtained.

* Are other important multivariate problems tractable on the average? In 1992 it was
shown that approximation is also tractable on the average. On a power scale the
average computational complexity of multivariate approximation is proportional to
I/E-. Optimal sample points were obtained.

* In the result stated above we ignored a multiplicative factor depending on the
dimension d. For example, the average computational complexity of multivariate
integration is ,(d/)l/E, where g(d) is a multiplacative factor which depends only on
the number of variables. Good theoretical estimates of g1d) are not known and
obtaining them is believed to be very hard.

THE NEW RESULT

"* An entirely new approach can be used. We get rid of the factor gfd).

"* Specifically. we say that a problem is stron,,ly tractable if the number of function
evaluations needed for the solution is completely independent of the number of
variables. It depends only on a power of l/E.

"* This seems too much to ask for. but both multivariate integation and multivariate
appoximation are strongly tractable on the average!

"* This result is so new that it has not yet been written up.

"* The result is given by a theorem and is non-constructive. That is. we know there
must exist evaluation points in (I dimensions which make integration and
approximation strongly tractable, but these points are not yet known.

FUTURE RESEARCH

An exciting, new result suggest new questions and directions. some of which we list here.
"* What are the points of evaluation which make multivariate integration and

multivariate approximation strongly tractable'? This is a major challenge.

"• We are currently implementing and testing software for multivariate integration
using the known points which make this problem tractable oni the average (but not
strongly tractable).

"* We then plan to implement and test this software for a netu ork of workstations.

"* We also plan to implement and test softm are for multivariate approximation.

"* It has been shown that multivariate integration and multi'ariate approximation are
strongly tractable. What other problems are strongly tractable'?

-2-
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2 J. F. TRAUB H. WOZNIAKOWSKI

1. Overview of Information-Based Complexity

The goal of this article is to report some of the recent progress in information-based

complexity, which for brevity will be denoted as IBC. We have selected topics which might

be of particular interest to the EATCS audience. We take an informal approach in this

article, focusing mainly on ideas. For precise formulations and results, as well as proof

techniques, see the books TWI[80], TWW [83], Novak [88], TWW [88], Werschulz [91],

and recent surveys, PT [87], PW [87], TW [91a, 91b], Heinrich [92], and Novak [93].
We begin by presenting a greatly simplified picture of computational complexity to

indicate where IBC fits in. For our present purpose, computational complexity may be

divided into two branches, discrete and continuous. Continuous computational complexity

may again be split into two branches. The first, which we'll call continuous combinatorial

complexity, deals with problems for which the information is complete. Problems where

the information may be complete are those which are specified by a finite number of

parameters. Examples include linear algebraic systems, matrix multiplication, and systems

of polynomial equations. Blum, Shub and Smale [89] obtained the first NP-completeness

results over the reals for a problem with complete information.

The other branch of continuous computational complexity is IBC. Typically, IBC studies

infinite-dimen-sional problems. These are problems where either the input or the output

are elements of infinite-dimensional spaces. Since digital computers can handle only finite

sets of numbers, infinite-dimensional objects such as functions on the reals must be replaced

by finite sets of numbers. Thus, complete information is not available about such objects.

Only partial information is available when solving an infinite-dimensional problem on a

digital computer. Typically, information is contaminated with errors such as round-off

error, measurement error, and human error. Thus, the available information is partial

and/or contaminated.

We want to emphasize this point for it is central to IBC. Since only partial and/or

contaminated information is available, we can solve the original problem only approxi-

mately. A goal of IBC is to obtain the computational complexity of computing such an

approximation.

In Figure 1 we schematized the structure of computational complexity described above.

'When one of us is a co-author, the citation will be made using only initials
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Computational Complexity

Discrete Complexity Continuous Complexity

Information Continuous

Based- Complexity Combinatorial Complexity

Figure 1

The motivation for studying IBC is two-fold:

(1) Continuous models, typically infinite-dimensional, are very common in science,

engineering, economics, and even in finance. Examples of the mathematical prob-

lems which arise from these models are partial or ordinary differential equations,

multivariate integration, and optimization.

(2) The subject matter covered by IBC is rich from a complexity point of view with

many results and numerous open questions, as we hope to illustrate in this article.

Although IBC typically studies infinite-dimensional problems there are important ex-

ceptions. These include probabilistic complexity of processor synchronization with sto-

chastic delays, Wasilkowski [88a], and complexity of solving large linear systems, TW [84],

Nemirovsky [91, 92].

IBC is formulated as an abstract theory; see the Appendix. The applications often

involve multivariate functions over the reals. For example, in multivariate integration,

the integrand is a multivariate function. In optimization, one seeks an extremum of a

multivariate function subject to multivariate constraints. In an initial-value problem, such

as the wave equation, the initial condition is again specified by a multivariate function.

The observation that a function over the reals cannot be entered into a digital computer

lies at the heart of IBC. (In the general case, an element of an abstract space cannot be

entered.) We call a multivariate function a mathematical input, denoted by Imath. Let S

be a linear or nonlinear operator which specifies the problem we want to solve, S : F --+ G
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for some sets F and G. The operator S carries Imath from F into a mathematical output

Omath in G; see Figure 2(a)

Imath S Omath
k

Figurý 2(a)

Of course, this is too general to characterize an IBC problem. For example, Imath could

be the locations of a set of cities and Omath could be an optimal tour; which is a typical

discrete problem. This is an IBC problem when Imath cannot be entered into a digital

computer, and it must be replaced by a computer input denoted by L.omp.

The computer input, Lcomp, consists of a finite set of numbers. For example, if Imath

is a function then Icomp might consist of its values at certain points. tcomp is obtained

from Imath by information operations. Different disciplines have different names for these

information operations. Computer scientists called them oracle calls, mathematicians call

them functionals, and engineers call them black-box calls. The replacement of Imath by

IIomp may be viewed as a discretization.

Denote the set of information operations by N(Im.th); we call N the information opera-

tor. Since many (typically, an infinite number of) mathematical inputs map into the same

computer input, the mapping N is many-to-one. That is, discretization is irreversible. The

situation is diagrammed in Figure 2(b).

Imath S Omath

'cmp

Figure 2(b)

Although there has been mention of neither computer output nor algorithm, we can

already draw certain conclusions. Since N is a many-to-one map, the computer does not

know the mathematical input. Therefore, it is impossible to solve this problem exactly;

the best we can hope for is an approximation.

We assign the same cost to each information operation. Given an error threshold e, we

can define the information complexity, COMP'Of°(e), as the minimal cost of the information

operations needed to obtain an e-approximation. (In computational learning theory this
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is called sample complexity.) Information complexity can be defined in different settings
such as the worst case, average case or probabilistic setting.

Using the concept of raditu of information, r(N), see TW [80, pp. 9-15], TWW [88,
pp. 43-45, 197-200, 327-3281, we can often obtain sharp lower and upper bounds on the

information needed to get an c-approximation. The information N is powerful enough to
obtain an c-approximation iff

r(N) < c.

Since the information complexity is a lower bound on the computational complexity, de-
fined below, this has led to proven (not conjectured) intractability and unsolvability results
which we'll describe in Section 2.

Because of the basic role played by information-level results we decided to name this
area information-based complexity. This level typically does not exist for discrete problems.
However, combinatorial issues will play an increasingly important role in IBC: see Section

4.

Let the computer output be denoted by Ocomp and the operator that maps L.op into

Ocomp by 4,. We call 4, a combinatory algorithm (algorithm for brevity). Since 4, maps
the computer input into the computer output it plays the same role as algorithm does

elsewhere in computer science. Figure 2(c) completes the picture.

Imath S Omath

N
I •oom

Figure 2(c)

Observe that Ocomp 0 Omath because N is many-to-one. In other words, S does not

commute with 4, composed with N.

We now discuss the model of computation used in IBC. For simplicity, we restrict
ourselves to the case that G = R. We assume that the real number model is chosen as our
model of computation. (See Section 5 for a discussion of why the real number model is
often used in IBC and also of research on finite models.) That is, we assume that arithmetic
operations and comparisons on real numbers are carried out exactly and at unit cost.

We define the combinatorial complexity, COMPcomb(e), as the minimal cost of the com-
binatory operations needed to compute an c-approximation if all information operations

were free.
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Finally, we define the computational complexity, COMP(e), as the minimal cost of com-

puting the computer output witL -rror at most e under the assumption that information

and combinatory operations are charged.

As before, combinatorial and computational complexity may be defined in the worst

case, average case and probabilistic settings. Note that,

COMP(,) > max{COMPI"f*(e), COMPc°mb(C)1.

We conclude this overview by characterizing IBC and stating its major goals. IBC

studies problems which have the properties listed below.
(1) C'omp # I='th.

(2) There is a charge for obtaining Icomp.

We discuss the first of these. These are two major reasons why Icomp # Imath. The first is

that the mathematical input cannot be represented by a finite set of numbers. We say the

information about Imath is partial An important example in applications is when Imath is a

multivariate function. A second reason is that the information about Imth is contaminated.

Information may be contaminated because of round-off or measurement errors.

We list some of the major goals of IBC.

(1) Obtain good lower and upper bounds on the computational complexity, informa-

tion complexity, and combinatorial complexity.

(2) Find information N and an algorithm 0 for which the computational complexity

is attained or nearly attained. Such N and 0 are called optimal, or nearly optimal.

We summarize the reminder of this article. We will present a selection of recent results

from a number of IBC areas. We then conclude this article with a discussion of similarities

and differences with discrete complexity and a brief history. An abstract formulation of

IBC may be found in the Appendix.

2. Breaking Intractability

It has been established that in the worst case deterministic setting many problems

studied in IBC are unsolvable or intractable. More precisely, let the mathematical input

f be a multivariate function of d variables. Let the smoothness of the set of inputs be

denoted by r. For example, we might require that all partial derivatives of f up to order r

exist and are uniformly bounded by 1. Assume we want to guarantee an error at most e.

Then, for many continuous problems the worst case computational complexity, COMP(e),
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is given by

COMP(e) = (1)

For example, multivariate integration, function approximation, partial differential equa-

tions, integral equations, and nonlinear optimization all have this computational complex-

ity, see Bakhvalov [59], Heinrich [93], Nemirovsky and Yudin [83], Novak [88], Pereverzev
(89], TWW (88], and Werschulz [911.

Furthermore, many problems in science, engineering, economics and even finance use
mathematical models with large d. For example, computational chemistry, computational

design of pharmaceuticals, and computational metallurgy involve computation with large

number of particles. Since the specification of each particle requires three variables for

static problems and six variables for dynamic problems, this leads to problems with very
large d. For path integrals, important in the foundation of physics, d = +00; they invite

approximation by multivariate integration with huge d. Problems with large d are also

important in mathematical disciplines such as statistics and geometry.

Observe that we can conclude that if the smoothness r is fixed and positive then the
computational complexity is an exponential function in d. Thus, problems whose complex-

ity is governed by (1) are intractable in d. If r = 0, that is, if the class of inputs is only

continuous, then COMP(c) = +oo for small -; that is, the problem is unsolvable.

The only way to break unsolvability or intractability is to weaken the assurance of an

e-approximation by shifting to another setting. Three settings have been used for trying to
break intractability: randomized, average case, and probabilistic settings. Here we confine

ourselves to recent advances on breaking intractability in the average case setting. See

TW [91a] for a survey of how to break intractability in the randomized setting.

We describe recent advances in breaking intractability for multivariate integration and

multivariate function approximation. Multivariate integration is especially common since
computing the expectation of any stochastic process leads to this problem.

In the average case setting the average computational complexity, COMP"vS(e), is de-

fined as the minimal expected cost such that the average error is less than 6. One has to

put a measure on the space of inputs. Although for discrete problems one can assume that

all inputs are equiprobable, no such assumption can be made for typical sets of functions.

The most commonly used measures on function spaces are Gaussian measures, and, in

particular, Wiener measures which are a special kind of Gaussian measure.

It was known that multivariate integration is tractable on the average but the proof is

non-constructive. That is, the optimal points at which the integrand should be evaluated

and the average computational complexity were unknown.
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Then W [91] established a relation between discrepancy and the average complexity of

multivariate integration. Discrepancy has been extensively studied in number theory and

sharp bounds on discrepancy in d dimensions were established by Roth [54,80]. The use

of the results from discrepancy theory solved the multivariate integration problem.

We describe the results more precisely. Let r = 0. Recall that in the worst case

deterministic setting the problem is unsolvable. Assume the measure on the integrands is

the Wiener sheet measure. Then

-v 1 ( (log !)(d1l)/2).

Thus a problem which is worst-case unsolvable becomes tractable on the average.2 Either

Hammersley points or hyperbolic-cross points are nearly optimal as the evaluation points

in d dimensions. These results were generalized to the case of smooth inputs by Paskov

[93].

We turn to the average complexity of function approximation. This is particularly

important since unlike for multivariate integration, it is known that randomization does

not help for function approximation, see Wasilkowski [88b], Novak [921. Again, let r = 0

and assume a Wiener sheet measure. Then

CO P vg(C =19- ( (log) 2(d-1))

and again hyperbolic cross-points can be used; see W [92b].

Roth's discrepancy results and the average computational results quoted above are big

theta results in -. That is, the dependence on e is known, but there is a multiplicative

factor, g(d), which is not known. If we're serious about solving problems with large d we

must be able to bound g(d). It is believed that obtaining good theoretical estimates of

g(d) is very hard.

The problem may be solved by getting rid of the factor g(d) in the following way, W [93].

A problem is said to be strongly tractable if the number of information operations, m((e, d),

needed to compute an c-approximation is independent of d and depends polynomially on

1/c, that is,"

m(e,d) < K , Vd, Vc5 <1,

2 By tractable (in 1/e) we mean that the complexity is bounded by K(d) (l/)•' for all d and c < I for
a number p which is independent of d and e.

3 More precisely, it is required that the computational complexity can be bounded by K c(d) (I/c)P for
certain numbers K and p, independent of d and e, where c(d) is the cost of one information evaluation of
a function of d variables.
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for certain numbers K and p.

That might seem to much to expect but multivariate integration and multivariate ap-

proximation are both strongly tractable on the average4 and it is sufficient to take the
information operations as function evaluations, W [93]. Usually in computational com-

plexity, an upper bound is given by an algorithm and a lower bound by a theorem. But

in this case, the upper bound has been determined by a theorem and is non-conrtrictive.

That is, we know that there must exist sample points at which we should evaluate the

function and a combinatory algorithm which make multivariate integration and approxi-

mation strongly tractable. The construction of such sample points and algorithm is being

studied; WW [94].

Due to the relation between discrepancy and average case multivariate integration,

strong tractability for multivariate integration implies that the discrepancy of n points
in d dimensions can be bounded, independently of d, by K n-P with the same K and
p for both problems. This estimate is of interest in its own right since discrepancy is

of considerable interest in number theory, see Beck and Chen [87], and Niederreiter [92].
Furthermore there are numerous applications of discrepancy; for example, for applications

in computer graphics, see Dobkin and Mitchell [93].

3. Verification

Most of IBC has been devoted to the computational complexity of computing an e-

approximation. Recently, the computational complexity of verification has been studied,

that is checking whether an answer is correct, see W [92aJ. In addition to being given a

problem, we are also given an "answer" g and asked whether it is true that g is within e
of the mathematical output; see the Appendix for a precise definition.

The reader's reaction may be that, of course, verification is no harder than computation.

Indeed, if the mathematical output can be computed exactly at finite cost, as is the case for

discrete problems, then with one extra comparison one can solve the verification problem.

However, for typical IBC problems the mathematical output cannot be computed with

finite cost, and the relation between verification and computation is not obvious. As we
shall see, in the worst case setting verification may be unsolvable while the corresponding

computational problem is easy.
We illustrate this with a simple example. The computational problem is to compute

an e-approximation to f01 f(x) dx where the mathematical input f is an arbitrary function

4 we stress that this holds for the Wiener sheet measure. For an isotropic Wiener measure, function
approximation is still intractable even on the average, see Wasilkowski (93].
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over [0, 1] satisfying a Lipschitz condition with constant at most one. The computational

input is given by values of f at some points. The computational complexity in the worst

case setting is known to be of order 1/c; thus the computational problem is "easy".

Suppose now that we're given the purported answer 9 and asked to check whether this

is within e of the integral of f. We show that the verification problem is unsolvable.

Suppose that we compute f at a finite number of points z, and that for every such

point f(xi) = g + c. If we answer NO the adversary will choose f(x) - g + e. This

function is certainly Lipschitz (with constant zero), and compatible with the computed

function values. Since f0' f(x) dx = g + e is within e of the answer g, we made a mistake

by answering NO.

If we answer YES the adversary will choose a hat function f going through the points

(xi, g + e) and with Lipschitz constant one. Clearly, f04 f(x) dx > g + c which is not within

e of the answer g. We made a mistake by answering YES. Hence, as long as we have finitely

many function values, there is no way to solve the verification problem in the worst case

setting.

It can be shown that verification for IBC problems is often unsolvable in the worst

case setting. Verification is therefore studied in the probabilistic setting. Here we want to

verify that g is an c-approximation with confidence 6; see the Appendix. In this setting

the probabilistic complexity of verification depends on how 6 and 6 are related. Any

relation between the probabilistic complexities of verification and computation is possible.

In particular, verification can be exponentially (in 6) harder than computation.

NW [92] studied relaxed verification in the worst case setting. That is the answers can

be YES, NO, or DON'T CARE. The size of the DON'T CARE region is specified by a

parameter at; see the Appendix. For a positive ca, the worst case complexity of relaxed

verification is finite. It is related to the worst case complexity of the computational problem

with s replaced by roughly 6 aq with q E [0,1] depending on the problem. Hence, if a is not

too small, the complexity of relaxed verification is roughly comparable to the complexity

of the computational problem. If, however, a is small then the complexity of relaxed

verification is usually much larger than the complexity of the computational problem.

4. Combinatorial Complexity

To date, IBC problems have usually been proven unsolvable or intractable by showing

that their information complexity was infinite or exponential. Recent results establish

unsolvability or intractability by showing that the combinatorial complexity is infinite or,

if P#NP, not polynomial. We report these results and also pose an open question.
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Papadimitriou and Tsitsiklis [86] is a pioneering paper which proves that a nonlinear

problem in decentralized control theory is intractable if P$NP. More precisely, the infor-
mation complexity is a polynomial in 1/c but the combinatorial complexity in a Turing

machine model of computation is not polynomial in 1/c, if P9NP.

WW (931 show that there exists a linear problem whose information complexity is a

polynomial in 1/c but whose combinatorial complexity is infinite5 , making the problem

unsolvable. An "artificial" problem is constructed to show that even a linear problem can

be very hard combinatorially. Chu [94] shows that the combinatorial complexity can be

any increasing function of the information complexity.

We pose an open question. So far, tight bounds on the computational complexity of

IBC problems are achieved when the minimal amount of information is used. Is there

a problem for which more information operations should be used to achieve the compu-

tational complexity? That is, does there exist a problem for which the minimal amount

of information is very hard to combine but if more information operations are computed

then it is easier to combine them and the total cost of computing an e-approximation is

minimized in the latter case.

We believe that in the future, progress in IBC will increasingly require results in both

information complexity and combinatorial complexity.

5. Similarities and Differences with Discrete Complexity

We begin with similarities. As in the rest of computational complexity, IBC studies

lower and upper bounds on the computational difficulty of solving mathematically posed

problems. Optimal and near-optimal algorithms are sought. To attempt to break the

intractability results and conjectures of the worst case deterministic setting, both IBC

and discrete complexity turned to other settings such as the randomized and average case

settings.

There are also significant contrasts, three of which we will discuss in the remainder of

the section. IBC has the following characteristics:

Problems cannot be exactly solved

Intractability has been proven for many problems

Real number model usually used

We discuss each of these.

SThis result holds if we allow arithmetic operations, comparisons of real numbers, and precomputation.
It is open if there exists a linear problem with finite information complexity and infinite combinatorial
complexity in the extended real number model in which logarithms, exponentials and ceilings are allowed.
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Problems Cannot Be Exactly Solved

As discussed in Section 1, it is impossible to solve IBC problems exactly because Iomp

Imath' It is possible, in principle, to solve discrete problems exactly although one may

choose to solve them approximately to reduce the cost.

Intractability has been proven for many problems

Using information-level arguments, unsolvability and intractability has been established

for many IBC problems. With only a few exceptions, there are no non-trivial lower bounds

on the combinatorial complexity of IBC problems. Since only combinatorial arguments are

available, intractability of many discrete problems has been conjectured. (Of course, lower

bounds, as well as unsolvability results, have been established for some combinatorial

problems.)

Real number model usually wed

To date, the real number model of computation has usually been used in continuous

computational complexity. After discussing the motivation, we turn to finite models for

continuous computational complexity.

Scientific problems are usually solved using fixed precision floating point arithmetic.

The cost of floating point operations and comparisons is independent of the size of the

operands. Furthermore, all arithmetic operations and comparisons cost about the same to

execute. Our goal is to choose a model of computation that corresponds to performance of

a digital computer executing floating point arithmetic. The abstraction we choose is the

real number model, which assumes that arithmetic and comparisons on real numbers can

be executed exactly and at unit cost. (The choice of unit cost is just scaling.) Rounding

errors occur when a digital computer executes operations in fixed precision floating point

arithmetic. In our abstraction we assume arithmetic is performed without error. This

separation of complexity theory from error analysis is done for technical reasons; compu-

tational complexity theory is hard enough without including round-off error. When an

interesting new algorithm is discovered from computational complexity considerations, a

stability analysis in fixed precision floating point arithmetic must be performed.

We stress that the real number model is not polynomially equivalent to the Tui.--g

machine model. For example, TW [82] shows that the cost of Kachian's algorithm is

not polynomial in the real number model and conjecture that linear programming is not

polynomial in this model. This conjecture is still open.

Several finite models of computations have also been analyzed. One of them is a model

based on recursive analysis, see Ko [91].

In the bit model it is assumed that one can get a rational binary approximation of a
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real number or of a function value to within any accuracy with the cost depending on the
number of bits. This model has been studied for problems with complete information, for
instance, for finding roots of polynomials, see Sch6nhage (861. A mixed model, in which the
bit model is used for information operations, and the real number model for combinatory
operations, is utilized by Kacewicz and Plaskota [90] to analyze certain IBC problems.

It is, of course, desirable to fully explore finite models for IBC problems and we believe
this to be an important direction for future research.

6. A Brief History

We present a very brief history of IBC. Research in the spirit of IBC was initiated in

the Soviet Union by Kolmogorov in the late 40's. Nikolskij [50], a student of Kolmogorov,

studied optimal quadrature. This line of research was greatly advanced by Bakhvalov, see
e.g., Bakhvalov [59, 71]. In the United States research in the spirit of IBC was initiated

by Sard [491 and Kiefer [531. Kiefer reported the results of his 1948 MIT Master's Thesis
that Fibonacci sampling is optimal when approximating the maximum of a unimodal

function. Sard studied optimal quadrature. Golomb and Weinberger [59] studied optimal
approximation of linear functionals. Schoenberg [64] realized the close connection between
splines and algorithms optimal in the sense of Sard.

T[61,64] initiated the study of iterative computational complexity, emphasizing the
central role of information. Maximal order results, needed to obtain lower bounds on
computational complexity, were obtained for scalar nonlinear equations. W [751 introduced

the concept of order of information in an abstract space which provides a general tool for
establishing maximal order of an algorithm.

Micchelli and Rivlin [77] studied optimal recovery and considered optimal error algo-
rithms for the approximation of linear operators. Linear noisy information was permitted.

A general formulation of IBC, primarily in the worst case deterministic setting, is pre-
sented in TW [80], where a somehow more detailed history and an annotated bibliography
of over 300 papers and books up to 1979 can be also found. At the time IBC was called
analytic complexity to differentiate it from algebraic complexity. TWW [88] extend the

study of IBC to numerous settings including average case, randomized, probabilistic, and

asymptotic settings, as well as mixed settings.
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Appendix

We present an abstract formulation of IBC. Let

S:F--G

where F is a subset of a linear space and G is a normed linear space.

For f E F, we wish to compute an approximation to S(f). To do this we must know

something about f. A basic assumption is that we have only partial information about

f. We gather this partial information about f by information operations L(f). Here we

will assume that L is a linear functional. Let A denote the class of information operations
we will permit. The choice of A will depend on the problem we wish to solve. If we wish

to approximate a definite integral we must exclude definite integration as a permissible

information operation, and for this problem A is usually defined as the class of function

evaluations. For other problems, such as the solution of nonlinear equations, we may

permit any linear functional. Let

N(f) =[Li (f),...,Ln (f),

for Li E A. Here Li, as well as n, can be adaptively chosen depending on the already

computed information operations.

N(f) is called the information on f and N the information operator. The motivation

for introducing the information operator N is to replace the element f, which is often from

an infinite-dimensional space, by n numbers. An idealized algoritlm•6 0 is an operator

N(F) --+ G. The approximation U(f) is then computed by

U(f) =

(The assumption that the approximation is the composition of 0 with N is made without

loss of generality.) We seek U(f) such that

IIS() - U()II <c.

We say U(f) is an e-approximation.

We illustrate the abstract model by an integration example withI'
S() = j f(t)dt,

By using such a general definition of algorithm, we strengthen the lower bound conclusions. For upper

bounds, we restrict the algorithms to those constructed from permissible combinatory operations.
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F {f: f E C'(0,1) and Ilfilmax - 1),

and G as the set of real numbers. The functionals are chosen as L,(f) = f(ti). An example

of an algorithm is

U(f) = 0(N (f)) = f(t).

To define computational complexity we must first introduce our model of computation,
which is defined by two postulates:

(i) Let fl denote the set of permissible combinatory operations including the addition
of two elements in G, multiplication by a scalar in G, arithmetic operations on

real numbers, and comparison of real numbers. We assume that each combinatory

operation is performed exactly with unit cost.
(ii) We assume that we are charged for each information operation. That is, for every

L E A and f E F, the computation of L(f) costs c, where c > 0. Typically, c > 1.

We assume the real number model, that is, we can perform operations on real numbers

exactly and at unit cost. See Section 5 for a discussion and motivations underlying the

model of computation and the real number model.
We briefly describe how the computation is carried out and how its cost is calculated. Let

cost(N, f) denote the cost of computing the information N(f). Knowing the information

N(f), the approximation U(f) = 0 (N (f)) is computed by combining the information to

produce an element of G which approximates S(f).

Let cost(O, N (f)) denote the cost of computing U(f) = 0 (N (f)), given N(f). Then
the total cost of computing U(f), cost(U, f), is

cost(U, f) = cost(N, f) + cost (0, N (f)).

We are ready to define the computational complexity, comp(e), as

comp(e) = inf {cost (U) : U such that e(U) < e},

with the convention that inf 0 = oo. The definition of cost(U) and e(U) varies according
to the setting. Settings studied in IBC include worst case, average case, probabilistic,

randomized and asymptotic. Mixed settings are also studied. We confine ourselves here
to the definition of just the worst case and average case settings.

Worst Case Setting: The worst case error and worst case cost of U are defined by

e(U) = sup IIS (f) - U (f)ll,
oEF

cost(U) = sup cost (U, f)
feF
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Average Case Setting: Let u be a probability measure defined on F. The average

case error and average case cost of U are defined by

e(U) = 1F • IS(f) - U(f)ll 2 I(df),

cost(U) = jF cost (U, f)p(df).

The concept of complexity permits us to introduce the fundamental concepts of optimal
information and optimal algorithm. Information N and an algorithm 4) that uses N are

called optimal information and optimal algorithm, respectively, if" U - 4) N satisfies

cost(U) = comp(e) and e(U) < e.

We define the verification problem. For given g E G we want to check whether IIS(f) -

gil < e. That is, we define VER(f,g) =YES if IIS(f) - gol -< e, and VER(f,g) =NO
otherwise. In the worst case setting, we wish to find an approximation operator U such

that

U(f,g) = VER(f,g) VIE F, g E G.

In the probabilistic setting, we assume that the set F is equipped with a probability

measure p. For a given confidence parameter 6 E [0,11, we wish to find an approximation
operator U such that

f {f EF; U(f,g)=VER(f,g)} >_ 1-6, VgEG.

For relaxed verification, we assume that a E [0, 1] and we redefine VER(f, g) as follows.

We set VER(f,g) =YES if 11S(f) - g1l -< e, VER(f,g) =NO if 11S(f - gil > (1 + a)e, and

VER(f, g) =DON'T CARE, otherwise.

The complexity of verification or relaxed verification is defined similarly as for compu-
tational problems, that is, by minimizing the cost of computing U that solves the corre-

sponding verification problem.
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Breaking Intractability
Problems that would otherwise be impossible
to solve can now be computed, as long as one

settles for what happens on the average

by Joseph F. Traub and Henryk Woiniakowsld

lthough mathematicians and sd- ence in some form. For example, a famn- time (rather than always), some kinds

entists must rank among the ilys decision about whether to refinance of multivariate problems become trac-
most rational people in the their mortgage with a 15- or 30-year table. One of us (Woiniakowskd) for-

world, they will often admit to falling loan can be extremely difficult to make, mally proved that such an approach
prey to a curse. Called the curse of di- because the choice depends on an In- works for at least two classes of math-
mension, it is one many people experi- terplay of monthly expenses, income, ematical problems that arise quite fre-

future tax and interest rates quently in scientific and engineering
and other uncertainties. In sci- tasks. The first is integration, a funda-
ence, the problems are more mental component of the calculus. The
esoteric and arguably much second Is surface reconstruction, in
harder to cope with. In the which pieces of information are used
computer-aided design of to reconstruct an object, a technique
pharmaceuticals, for instance, that is the basis for medical imaging-
one might need to know how Fields other than science can benefit
tightly a drug candidate will from ways of Lreaking intractability.
bind to a biological receptor. For example, financial institutions often
Assuming a typical number of have to assign a value to a pool of mort-
8,000 atoms in the drug, the gages, which is affected by mortgagees
biological receptor and the who refinance their loans. If we assume
solvent, then because of the a pool of 30-year mortgages and per-
three spatial variables needed mit refinancing monthly, then this task
to describe the position of contains 30 years times 12 months, or
each atom, the calculation in- 360 variables. Adding to the difficulty
volves 24,000 variables. Sim- is that the vable of the pool depends
ply put, the more variables, or on Interest rates over the next 30 years,
dimensions, there are to con- which are of course unknown.
sider, the harder it is to ac- We shall describe the causes of in-
complish a task. For many tractability and discuss the techniques
problems, the difficulty grows that sometimes allow us to break it.
exponentially with the number This issue belongs to the new field of
of variables, information-based complexity, which

The curse of dimension can examines the computational complexi-
elevate tasks to a level of diff- ty of problems that cannot be solved
culty at which they become in- exactly. We shall also speculate briefly
tractable. Even though scien- on how information-based complexity
tists have computers at their might enable us to prove that certain
disposal, problems can have scientific questions can never be an-
so many variables that no swered because the necessary comput-
future increase In computer ing resources do not exist in the uni-
speed will make It possible to verse. If so, this condition would set li-
solve them in a reasonable its on what is scientifically knowable.
amount of time.

Can Intractable problems be "nformation-based complexity fo-
made tractable-that Is, solv- cuses on the computational diffi-
able in a relatively modest culty of so-called continuous prob-
amount of computer time? ies. Calculating the movement of the
Sometimes the answer Is, hap- planets is an example. The motion is
pily, yes. But we must be will- governed by a system of ordinary dif-
Ing to do without a guarantee ferential equations-that is, equations
of achieving a small error in that describe the positions of the plan-
our calculations. By settling ets as a function of time. Because time

A potndogy bdrumft pvbkem for a small error most of the can take any real value, the mathemati-
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lems, such as ordinary and partial dif-
ferential equations, integral equations,
linear and nonlinear optimization, inte-
gration and surface reconstruction. completely identify the true integrand. operations, such as addition, multipli-
These formulations often involve a large Because one can evaluate the integrand cation and comparison, each have a
number of variables. For example, com- only at a finite number of points, the in- given cost. The cost could simply be the
putations in chemistry, pharmaceutical formation about the integrand is par- amount of time a computer needs to
design and metallurgy often entail cal- tial. Therefore, the integral can, at best, perform the operation. Then the com-
culations of the spatial positions and only be approximated. One typically putational complexity of this integra-
momenta of thousands of particles. specifies the accuracy of the

Often the intrinsic difficulty of guar- approximation by stating that
anteeing an accurate numerical solu- the error of the answer falls
tion grows exponentially with the num- within some error threshold.
ber of variables, eventually making the Mathematicians represent this
problem computationally intractable, error with the Greek letter ep-
The growth is so explosive that in many silon, e.
cases an adequate numerical solution Even this goal cannot be
cannot be guaranteed for situations achieved without further re-
comprising even a modest number of striction. Knowing the inte-
variables, grand at, say, 0.2 and 0.5 indi-

To state the issue of intractability cates nothing about the curve
more precisely and to discuss possible between those two points. The
cures, we will consider the example of curve can assume any sha.pe
computing the area under a curve. The between them and therefore
process resembles the task of comput- enclose any area. In our book-
ing the vertical area occupied by a col- shelf analogy, it is as if an art
lection of books on a shelf. More explic- book has been shoved be-
itly, we will calculate the area between tween a run of paperbacks. To
two bookends. Without loss of general- guarantee an error of at most
ity, we can assume the bookends rest E, some global knowledge of
at 0 and 1. Mathematically, this sum- the integrand is needed. One
ming process is called the computation may need to assume, for ex-
of the definite integral. (More accurate- ample, that the slope of the
ly, the area is occupied by an infinite function is always less than
number of books, each infinitesimally 45 degrees-or that only pa-
thin.) The mathematical input to this perbacks are allowed on that
problem is called the integrand, a func- shelf.
tion that describes the profile of the In summary, an investiga-
books on the shelf. tor trying to solve an integral

Calculus students learn to compute must usually do it numerically
the definite integral by following a set on a computer. The input to
of prescribed rules. As a result, the stu- the computer is the integrand
dents arrive at the exact answer. But values at some points. The
most integration problems that arise in computer produces an output
practice are far more complicated, and that is a number approximat-
the symbolic process learned in school ing the integral.
cannot be carried out. Instead the inte-
gral must be approximated numerical- he basic concept of
ly-that is, by a computer. More exactly, I computational complex-
one computes the integrand values at T ity can now be intro-
finitely many points. These integrand duced. We want to find the in-
values result from so-called information trinsic difficulty of solving the
operations. Then one combines these integration problem. Assume
values to produce the answer. that determining integrand

Knowing only these values does not values and using combinatory One solution to an intractable problem
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SAMPLNG POINTS indicate where to evaluate functions in the randomized and av- a
erage-case settings. The points are plotted in two dimensions for visual clarity. The ............
points chosen can be spaced over regular intervals such as grid points (a), or in
random positions (b). Two other types, so-called Hammersley points (C) and hy-
perbolic-cross points (d), represent optimal places in the average-case setting. ............

tion problem can be defined as the iran- plexity is roughly 1024. In other words,
imal cost of guaranteeing that the com- it would take a trillion trillion inte-
puted answer is within an error thresh- grand values to achieve that level of ac ....... ..............
old. e, of the true value. The optimal curacy. Even if one generously assumes ...... ......... . ..
information operations and the opti- the existence of a sequential computer
mal combinatory algorithm are those that performs 10 billion function evalu- " ...

that minimize the cost. ations per second, the job would take ........ .o
Theorems have shown that the com- 100 trillion seconds, or more than three . .

putatlonal complexity of this integra- million years. A computer with a million .
tion problem is on the order of the re- processors would still take 100 million *
ciprocal of the error threshold (i/e). In seconds, or about tOd-ee years. .......... ......... ...
other words, it is possible to choose a To discuss multivariate problems ............
set of information operations and a more generally, we must introduce one
combinatory algorithm such that the additional parameter, called r. This pa-
solution can be approximated at a cost rameter represents the smoothness of
of about 1/e. It is impossible to do the mathematical inputs. By smooth- tion, surface reconstruction, partial dif-
better. With one variable, or dimension, ness, we mean that the inputs consist ferential equations, integral equations
the problem is rather easy: The compu- of functions that do not have any sud- and nonlinear optimization all have this
tational complexity is inversely propor- den or dramatic changes. (Mathemati- computational complexity.
tional to the desired accuracy. cians say that all partial derivatives of if the error threshold and the smooth-

But if there are more dimensions to the function up to order r are bound- ness parameter are fixed, then the com-
this integration problem, then the corn- ed.) The parameter takes on nonnega- putational complexity depends expo-
putational complexity scales exponen- tive integer values; increasing values in- nentially on the number of dimensions.
tially with the number of variables. If dicate more smoothness. Hence, r = 0 Hence, the problems become intractable
d represents the number of variables, represents the least amount of smooth- for high dimensions. An impediment
then the complexity is on the order of ness (technically, the integrands are even more serious than intractability
(1/O)d-that is, the reciprocal of the only continuous-they are rather jagged may occur: a problem may be unsolv-
error threshold raised to a power equal but still connected as a single curve), able. A problem is unsolvable if one
to the number of variables. If one Numerous problems have a compu- cannot compute even an approxima-
wants eight-place accuracy (down to tational complexity that is on the order tion at finite cost. This is the case when
0.00000001) in computing an integral of (1 /e)d/r. For those of a more techni- the mathematical inputs are continu-
that has three variables, then the com- cal persuasion, multivariate integra- ous but jagged. The smoothness pa-

Developing a Random Approach
n the 1940s physicists working on variety of phenomena, from the size of
the Manhattan Project at Los Alamos cosmic showers to the percolation of a liq-

National Laboratory realized that some uid through a solid.
of the problems they were trying to For multivariate integration, the classi-
solve, such as the movement of neu- cal Monte Carlo method is optimal only if
trons through materials, lay beyond the the smoothness parameter, r, of integrands
reach of deterministic calculations, is zero. In 1959 the Russian mathemati-
They turned to the Monte Carlo method clan N. S. Bakhvalov began pioneering re-
of Nicholas C. Metropolis and Stanislaw search on the computational complexity
M. Ulam. The strength of the method is of multivariate integration in the random-
that its error does not depend on the ized setting and devised an alternative to
number of variables in the problem. the Monte Carlo method. Later, in 1988,

" Hence, if applicable, it breaks the curse Erich Novak of the University of Erlangen-
of dimension. The classical Monte Carlo Nurnberg extended the work of Bakhvalov
method for multivariate integration re- to establish that the computational com-
quires at most of order I/E 2 evalua- plexity in the randomized setting is of or-
tions at random points, where e is the Stanislaw M. Ulam, 1909-84 der (I/F) , with s = 2/(1 + 2 r/d). Note
error bound. An alternative statement that 0 < s ! 2. If the smoothness parame-
Is that if the integrand is evaluated at n random points, ter equals zero, then s = 2, and the classical Monte Carlo
then the expected error of randomization is at most of or- method is optimal. On the other hand, if r is positive, then
der 114i. Since its formulation, the Monte Carlo method the classical Monte Carlo method is no longer optimal,
and its variations have proved to be useful to calculate a and Bakhvalov's method can be used instead.
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the error threshold (1/£2). Thus, the Good estimates of gn (d), g2 (d), g3(d) and g4(d) are currently not known.
problem is always tractable, even if the ______________________
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construction. Is there an approach that For example, evaluating the integrand multiplicative factors for simplicity's
does and that works over a broad class at regularly spaced points, such as those sake, the average computational com-
of mathematics problems? on a grid, are often used in computa- plexity has been proved to be inversely

There is indeed. It is the average-case tion. But theorems have shown them to proportional to the error threshold (on
setting, in which we seek to break un- be poor choices for the average-case the order of I/E) [see box on page 51.
solvability and intractability by replac- setting. A proof was given in 1975 by For small errors, the result is a major
ing a worst-case guarantee with a weak- N. Donald Ylvisaker of the University improvement over the classical Monte
er one: that the expected error is at of California at Los Angeles. It was later Carlo method, in which the cost is in-
most E. The average-case setting im- generalized in 1990 by Wasilkowski and versely proportional to the square of
poses restrictions on the kind of math- Anargyros Papageorgiou, then studying the error threshold (l/E 2 ).
ematical inputs. These restrictions are for his Ph.D. at Columbia University. The average case offers a different
chosen to represent what would hap- The solution came in 1991, when kind of assurance from that provided
pen most of the time. Technically, the Wo~nlakowski found the construction. by the randomized (Monte Carlo) set-
constraints are described by probabili- As sometimes happens in science, a re- ting. The error in the average-case set-
ty distributions; the distributions de- suit from number theory, a branch of ting depends on the distribution of the
scribe the likelihood that certain inputs mathematics far removed from aver- integrands, whereas the error in the
occur. The most commonly used distri- age-case complexity theory, was crucial. randomized setting depends on a dis-
butions are Gaussian measures and, in Part of the key came from work on tribution of the sample points. In our
particular, Wiener measures. number theory by Klaus F. Roth of Im- books-on-a-shelf analogy, the distrlbu-

Although it was , nown since thd perial College, London, a 1958 Fields tion in the average-case setting might
1960s that multivariate integration is Medalist. Another part was provided by rule out the inclusion of many oversize
tractable on the average, the proof was recent work by Wasilkowski. books, whereas the distribution in the
nonconstructive. That is, it did not spec- Let us describe the result more pre- randomized setting determines which
ify the optimal points to evaluate the cisely. First, put the smoothness para- books are to be sampled.
integrand. the optimal combinatory al- meter at zero-that is, tackle a problem In the average-case setting the opti-
gorithm and the average computation- that is unsolvable in the worst-case de- mal evaluation points must be deter-
al complexity. Attempts to apply ideas terministic setting. Next, assume that ministically chosen. The best points are
from other areas of computation to de- integrands are distributed according to Hammersley points or hyperbolic-cross
termine these unknowns did not work. a Wiener measure. If we ignore certain points [see illustration on pages 4

and 51. These deterministic points
offer a better sampling than randomly
selected or regularly spaced (or grid)
points. They make what would be im-

Discrete Computational Complexity possible to solve tractable on average.
Is surface reconstruction also tracta-

ble on the average? This query is par-
his article discusses intractability and breaking of intractability for multi- ticularly important because, as already

Tvariate integration and surface reconstruction. These are two examples mentioned, randomization does not
of continuous problems. But what is known about the computational com- help. Under the same assumptions we
plexity of discrete, rather than continuous, problems? The famous traveling used for integration, we find that the
salesman problem is an example of a discrete problem, in which the goal is average computational complexity is on
to visit various cities in the shortest distance possible. the order of 1/E 2 . Hence, surface re-

A discrete problem is in- construction becomes tractable on av-
tractable if its computational erage. As was the case for integration.
complexity increases exponen- hyperbolic-cross points are optimal.
tially with the number of its in- We are now testing whether the aver-
puts. The intractability of many age case is a practical alternative. A
discrete problems in the worst- Ph.D. student at Columbia, Spassinir H.
case deterministic setting has Paskov, is developing software to comn-
been conjectured but not yet pare the deterministic techniques with
proved. What is known is that Monte Carlo methods for integration.
hundreds of discrete problems Preliminary results obtained by testing
all have essentially the same certain finance problems suggest the
computational complexity. That superiority of the deterministic meth-
means they are all tractable or ods in practice.
all intractable, and the common In our simplified description, we ig-
belief among experts is that nored a multiplicative factor that affects
they are all intractable. For tech- the computational complexity. This fac-
nical reasons, these problems tor depends on the number of variables
are said to be NP-complete. One in the problem. When the number of
of the great open questions in variables is large, that factor can be-
discrete computational complex- come huge. Good theoretical estimates
ity theory is whether the NP- of the factor are not known, and obtain-
complete problems are indeed ing them is believed to be very hard.
intractable [see "Turing Ma- Woiniakowskl uncovered a solution:
chines," by John E. Hopcroft; S- get rid of that factor. Specifically, we say
ENTIFIC AMERICAN, May 19841. a problem is strongly tractable if the

____ number of function evaluations needed
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for the solution is completely indepen-
k dent of the number of variables. Instead

it would depend only on a power of
I/s. The possibility seems ioo much"
to hope for, but it was proved last year
that multivariate integration and sur-
face reconstruction are both strongly
tractable on the average.

A final obstacle must be omercome
before these new results can be used.
We know there must exist evaluation
points and a combinatory' algdrithm
that make integration and surface re-
construction strongly tractable on the
average. Unfortunately, the proof of
this result does not tell us what the
points and algorithms are, thus leaving
a beautiful challenge for the future.

ork on information-based

complexity has led one of us
(Traub) to speculate that it

might be possible to prove formally REEN Y OF SPACE SHUTTLE provides an example of a computationally complex
that certain scietitific questions are un- task. modeling of the airflow around the craft. This job is difficult even though
answerable. The proposed attack is to only seven variables govern the dynamics. Added dimensions may yield problems
prove that the computing resources that can never be solved and thus limit what Is sdentiflcally knowable.
(time, memory, energy) do not exist in
the universe to answer such questions.

One important achievement of math- number of variables or particles. Even the question is intractable. We would
ematics over the past 60 years is the worse, many physics problems require therefore have science's version of GO-
idea that mathematical problems may solutions to a kind of integral called del's theorem.
be undecidable, noncomputable or in- a path integral, which has an infinite Humans are intrigued not only by the
tractable. Kurt G6del proved the first number of dimensions. Solutions of unknown but also by the unknowable.
of these results. He established that in path integrals invite high-dimensional Here we have suggested one possible
a sufficiently rich mathematical sys- approximations. Thus, the intractabili- attack to establish what may be forever
tern, such as arithmetic, there are theo- ty results and conjectures are certainly unknowable in science. The curse of di-
reins that can never be proved, daunting because they suggest that mension, broken now for many kinds

We believe it is time to up the ante many tasks with a large number of of problems, may yet cast its spell.
and try to prove there are unanswer- variables or objects might be impossi-
able scientific questions. In other words, ble to solve.
we would like to establish a physical We emphasize the possibility of oth- FURTHER READING
Gddel's theorem. The process offers a er impediments to answering scientific INFORMATON-BASED COMP.EXrTy. E. W.
markedly different challenge from prov- questions. One is chaos, the extreme Packel and J. F. Traub in Nature, Vol.
ing results about mathematical prob- sensitivity to initial conditions. Because 328, No. 6125, pages 29-33; July 2,
lems, because a scientific question does the precise initial conditions are either 1987.
not come equipped with a mathemati- not krown or cannot be exactly entered INFORMATION-BASED CoMP.Erry. J. F.
ca' formulation. Such questions include into a du'rl computer, certain ques- Traub, G. W. Wasllkowski and H. Woz-
when the universe will stop expanding tions about the behavior of a chaotic niakowskl. Academic Press, 1988.
and what the average global tempera- system cannot be answered. To focus AVERAGE CASE COmPlEXrTY OF MuLTI-
ture will be in the year 2001. on the issue at hand, we limit ourselves VARIATE INTEGRATION. H. Woiniakow-

ski in Bulletin of the American Mathe-Why do intractability results suggest to intractability. matical Society, Vol. 24, No. 1, pages
that some scientific questions might be As we have already observed, a scien- 185-194; January 1991.
unanswerable? Recall the results. In the tific question does not come equipped THE CompurATiONAL CompwLrry or
worst-case deterministic setting, the with a mathematical formulation. Each DIFERENTtAL AND INTEGRAL EQUA-
computational complexity of many con- of a number of models might capture TIONS: AN lNFORMATION-BASED AP-
tinuous problems grows exponentially the essence of a scientific question. Be- PROACH. Arthur G. Werschulz. Oxford
with dimension. Also, the computation- cause intractability results refer to a University Press. 1991.
al complexity of many discrete prob- particular mathematical formulation, it THEORY AND APPLICATIONS OF INFOR-

MATION-BASED COmpExITy. J. F. Traublems is conjectured to grow exponen- might happen that although a partic- and H. Woiniakowski in 1990 Lectures
tially with the number of inputs [see ular mathematical formulation is in- in Complex Systems, Santa Fe Institute.
box on opposite page]. Furthermore, al- tractable, another formulation may be Edited by Lynn Nadel and Daniel L.
though some problems are tractable in found that is indeed tractable. This Stein. Addison-Wesley, 1991.
the randomized or average-case set- prospect indicates a possible way to WHAT Is ScwnIENTcALLY KNOWABLE?

tings, It has been proved that others re- prove the existence of unanswerable J. F. Traub in Carnegie Mellon Univer-
main Intractable. Such problems may scientific questions. We can attempt to sity Computer Science: A 25th Anni-

versary Commemoratwve. Edited bylurk in certain supercomputing tasks show that there exist scientific ques- Richard F. Rashld. Addison-Wesley,
or questions regarding the foundations tions such that every mathematical for- 1991.
of physics. After all, they involve a large mulation that captures the essence of

ScIENTIFc AMERICAN January 1994 7


